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Advances in structural biology have begun to reveal the
existence of partialfyand completeldisordered proteins which
become more structured upon binding other molecules under
nativelike conditions. However, the ability to predict these
complementary partners is still in its infancy and we believe that

detailed studies of association/folding processes might shed light o

on this issue. In this regard, it would be interesting to revisit the
pioneering work on fragment complementation of Tanilfchs,
well as the more recent work by othérdn these experiments,
the same principles that govern protein folding are apparently
involved in the binding of two or more chaifisNussinov and
co-worker$ have indeed found hydrophobic folding units, com-
monly found in monomeric proteins, at protein interfaces. These

elegant results reflect that nature has found ways of assembling

the same units using pieces of various shapes. Since most of th
sequential information needed to acquire folding is available,

although not on a single chain, one can speculate that many

cleavages will provide fragments capable of reassembling the

native structure. However, most of the successful reassemblies

have been limited to loops. We have chosen oxidiEedoli
thioredoxin (Trx), a smalé/3 -protein! as a model hydrophobic
folding unit to study the effect of the site and number of cleavages
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Figure 1. H—1N HSQC spectra of®N—N fragment (A), 1°N—-C
fragment (B), a 2.5:1 stoichiometric mixture of unlabeled C fragment
and?*N—N fragment (C), and a 1:2.5 stoichiometric mixture!efi—C
fragment and unlabeled N fragment (D). All of the samples were prepared

€ 10 mM KPR, pH 6.5, 90% HO/10% DO at 20.

on the reassembly. Here we report the first NMR evidence of
successful reassembly-{87/38-108) by fragment complemen-
tation after cleavadeof an a-helix.

Because of the high sensitivity &fl and*>N chemical shifts
to structural changestH—*N HSQC spectra (see Figure 1)
provide a powerful tool to probe the conformation of a given
polypeptide sequence. Thd—N HSQC spectra of the N- and
C-terminal fragments exhibit a narrow dispersion of backbone
IH chemical shifts (0.80 and 0.95 ppm, respectively), which is
characteristic of disordered polypeptidesn contrast, théH—
15N HSQC spectra of thEN-labeled N- and C-terminal fragments
in the presence of an excess of the unlabeled complementary
fragment show a much broader dispersion of backbdre
chemical shifts (3.15 and 3.11 ppm, respectively), which is
consistent with the formation of a noncovalent complex 3/
38—-108) with well-defined structur®.

The HSQC spectra of the 1:1 stoichiometric mixture ef3¥
and 38-108 (data not shown) show the resonance cross-peaks
of the individual fragmentdin equilibrium with their noncovalent
complex. This complex is apparently less stable than a previously
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z 04 permuted proteir§ indicate that the folded state is tolerant to
g ool such perturbations. However, the number of successful fragment
- complementations is smaller than the number of known protein
T 0.07 dissectiong®91® This observation suggests that the site and
0.2 number of cleavages have a profound effect on the energetics
. g: but not on the structure of the folded state. Indeed, the
E ‘ relationship between structure and stability of the complexes (1
e 9 ' ..|" - 37/38-108; 1-73/74-108) derived from Trx is not simple and
z -1 | might be due to (i) entropic differences between the cleavage of
27 a loop and a helix, (ii) the electrostatic effect of the new termini
127 on the helix macrodipol&,and (jii) the competition between intra-
£ i: ‘ { 2L and intermoleculdPe??23processes involving the individual
2 9 . l'l" gL fragments. Thus, more work is still needed to predict which
o :g: ‘ cleavage sites lead to stable reassemblies.
-12- The de novo design of proteins with desirable properties
_ ] 0 ) 2_0 4060 80 100 demands a profound understanding of protein folding. During
Figure 2. Chemical shift differences between the,HiN, and**N of the past decade, the classification of thousands of protein
the complex (337/38-108) and uncleaved Trx. sequences according to a much smaller number of structural
c motifs’* has opened the way to the design and prediétiof
protein structure. Modern algorithms based on the idea of
@ “threading”?6 have been partially successful in the prediction of

structure and are continuously being improvédProgress has
also been made in the design of small-siaeielical?® 5-shee®
anda/p protein domaing® The next step might be the rational
design of binding proteins of pharmaceutical interest. Our results
might have implications in this area; for instance, one could
imagine inserting one fragment in the sequence of a hydrophobic
unit while its complementary fragment is inserted into another.

P

Figure 3. Scheme of the topology of the complex+{37/38-108). The
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